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Thermal conductivity estimation in non-linear problems
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Abstract

This paper reports on the development of a new application of the thermal probe in the determination of the thermal conductivity in
non-linear problems. The method uses a direct non-linear numerical model associated with a parameter estimation technique to deter-
mine temperature dependent conductivities. Using enthalpy as the primary variable in the numerical model, phase change situations can
easily be accommodated. The potential and effectiveness of the method are shown through test data obtained by simulated experiments.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

During these last decades the development of the tech-
nology has lead to an increasing effort in the determination
of material properties. Amongst these properties the ther-
mal conductivity is an important parameter in heat transfer
and is fundamental in accurately modelling and simulating
physical problems. Several techniques have been developed
for the measurement of the thermal conductivity but most
of them were restricted to linear cases where the conductiv-
ity is independent of other parameters like temperature.
One of the most used methods is the thermal probe with
its two major advantages: it is based on a transient mathe-
matical model which makes it fast (as opposed to steady-
state techniques, e.g. the Hot Box) and is compact and
transportable (i.e. can be used for in situ measurements).
The theory behind the thermal probe is based on the hot
wire technique developed by Van Der Held and Van Dru-
nen [1] and Blackwell [2]. A known heat flux Q is dissipated
during a certain time in the cylindrical probe and the cor-
responding temperature rise in the probe is measured. This
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temperature variation depends, among other parameters,
on the thermal conductivity k of the sample, see Fig. 1.

The solution of the governing heat conduction
differential equation in cylindrical co-ordinates leads to
an expression of the probe temperature rise in the form:

DT ðtÞ ¼ Q
4pk ln t þ Q

4pk ln 4a
r2

i
� cþ 2k

riRi

� �
, where ri is the probe

radius, Ri is the thermal resistance at the probe-sample
interface and c is Euler constant. The graph of the function
DT ðtÞ ¼ f ðln tÞ is linear and k is determined from the slope
Q=4pk.

Due to its simplicity and ease of use this method found a
wide spectrum of applications ranging from ceramics and
soils to fluids and concentrated chemical solutions [3–7].

However, due to their complexity, non-linear problems
(including phase change) are very difficult, if not impossible
in most cases, to deal with through analytical mathematical
treatment. They have then rarely been addressed and there
is a lack of data on thermophysical properties in non-linear
temperature intervals. Some studies used linear techniques
over small temperature intervals where the thermophysical
properties are assumed constant to cover the entire non-lin-
ear range [8–10], but this is time consuming and in highly
non-linear problems, the necessity of considering very
small temperature intervals inevitably leads to sources of
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Nomenclature

a diffusivity
cp specific heat
g heat generation rate
H enthalpy
h convective coefficient
k thermal conductivity
p number of parameters
Q heat flux
R thermal resistance
r radius
T temperature
t time
X sensitivity coefficient
Y measured temperature

Greek symbols

b parameter to be estimated
e measurement error
q density
X stabilising matrix

Subscripts

i index for time or node
j index for estimated parameters

Superscripts

n; k iteration indices
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experimental errors [11]. An analytical analysis based on
Stefan and Neumann theory has been carried out but
was limited to pure materials where phase change occurs
at a single constant temperature [12].

At the same time, with the increasing use of simulation
codes in industry and research, demand for accurate values
of thermal conductivity and other material parameters is
growing. For example in the food industry, where frozen
goods are increasingly consumed, temperature dependent
thermal conductivity values are often obtained through lin-
ear interpolation which can lead to errors in case of high
non-linearity [13]. Another example lies in building energy
savings where phase change materials are seen to be one of
the most important ways in cutting CO2 emission through
solar or recycled energy storage [14]. Parameter estimation
techniques can provide a solution to these problems. They
are based on the minimisation of a quadratic criterion rep-
resenting the difference between measured variations of
physical quantities (usually the temperature) and the corre-
sponding calculated ones through a mathematical model.
Their clear benefit resides in the fact that the mathematical
Sample
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Fig. 1. Thermal probe principle.
model does not have to be analytical as an explicit formu-
lation of the measured parameter is not needed. In fact,
associated with numerical modelling in complex physical
problems (e.g. non-linear) parameter estimation techniques
can prove to be an indispensable tool [15].

In this study an attempt is made to bring together the
advantages of the thermal probe as an experimental set-
up (i.e. ease of use, in situ measurement, etc.) and the
power of parameter estimation techniques in the determi-
nation of the thermal conductivity in non-linear problems.
As a first phase of this research programme, the feasibility
and limits of the suggested new method are evaluated
through numerical simulations using computer generated
temperatures. The second phase dealing with the experi-
mental work and application of this method to a phase
change problem will be the object of a following paper in
due course.

The principle of the thermal probe is maintained, see
Fig. 1, the novel part is the mathematical treatment of
the temperature rise in the probe ðDT ¼ f (time)) using a
parameter estimation technique. Practically, the tempera-
ture rise will be measured using a single thermocouple in
the glue layer of the probe. For a constant power supply
Q over a certain time, DT provides a signal used in the
determination of the evolution of the thermal conductivity
with the temperature at a set number of points.
2. Numerical model

The system to be modelled is a cylindrical multi-layer
arrangement: the sample and the probe with its three com-
ponents (the hot wire, the glue maintaining it and the exter-
nal tube), see Fig. 2. The non-linear cylindrical governing
equation is:

1

r
o

or
kðr; T Þr oT

or

� �
þ gðrÞ ¼ qðr; T Þcpðr; T Þ

oT
ot

ð1Þ
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Fig. 2. Subdivision of the system (not to scale).
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Fig. 3. Probe-sample interface.
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with the initial condition t ¼ 0; T ðrÞ ¼ T 0 0 6 r 6 rc;

the boundary conditions r ¼ 0; kðT Þ oT
or ¼ 0;

r ¼ rc; �kðr; T Þ oT
or ¼ hðT ðrcÞ � T 0Þ;

where q is the density, cp is the specific heat, g the heat gen-
eration term and h the convective heat transfer coefficient.
This model does not take into account convective effects in
the liquid phase as it is purely used to demonstrate the po-
tential of the method through computer simulations.

In order to be able to treat phase change problems with-
out dealing with the solid/liquid interface, Eq. (1) is rewrit-
ten using enthalpy H (which includes the latent heat) as
variable. It is assumed that enthalpy is a piecewise linear
function of temperature ðT ¼ AH þ BÞ:

1

r
o

or
kðr;HÞr oðAH þ BÞ

or

� �
þ gðrÞ ¼ qðr;HÞ oH

ot
: ð2Þ
A numerical solution to Eq. (2) is obtained using an energy
balance technique [21]. For node i, the heat balance can be
written as

2priDrqi
dH i

dt
¼
ðAH þ BÞiþ1 � ðAH þ BÞi
½1=ð2pki;iþ1Þ� lnðriþ1=riÞ

þ ðAH þ BÞi�1 � ðAH þ BÞi
½1=ð2pki�1;iÞ� lnðri=ri�1Þ

þ gi: ð3Þ

With an implicit numerical scheme, Eq. (3) becomes:

2priDrqi
DtAi

½1=ð2pki;iþ1Þ� lnðriþ1=riÞ
þ DtAi

½1=ð2pki�1;iÞ� lnðri=ri�1Þ

� �
Hnþ1

i

þ � DtAiþ1

½1=ð2pki;iþ1Þ� lnðriþ1=riÞ

� �
H nþ1

iþ1

þ � DtAiþ1

½1=ð2pki�1;iÞ� lnðri=ri�1Þ

� �
H nþ1

i�1

¼ ð2riDrqiÞHn
i þ

DtðBiþ1 � BiÞ
½1=ð2pki;iþ1Þ� lnðriþ1=riÞ

þ DtðBi � Bi�1Þ
½1=ð2pki�1;iÞ� lnðri=ri�1Þ

þ giDt ð4Þ
In order to avoid using an average thermal conductivity be-
tween the probe and the sample, the thermal contact be-
tween these two materials is treated through half volumes
either side of the interface. The corresponding nodes ex-
change heat energy through the thermal resistance only,
see Fig. 3.

Linear equations can be written for all nodes and a
matrix formulation is used as follows:

Anþ1Hnþ1 ¼ Bnþ1; ð5Þ

where A is the coefficient matrix, H is the vector of the un-
known enthalpies, and B is the known coefficient vector
whose elements involve contributions due to energy gener-
ation and boundary conditions for the problem.

The computer program developed uses a variable time
step scheme. Typical initial time step of 1 s is reduced pro-
gressively according to preset criteria (i.e. convergence,
maximum number of iterations) during the phase change.
After the phase change when convergence is quicker the
time step is progressively increased back to the initial value.
Similarly, the space grid resolution is finer in and immedi-
ately around the probe to take account of the localised
phase change heat transfer. A total number of nodes of
800 was necessary to allow convergence for phase change
occurring at small temperature interval (where the slope
of the line AHþ B is very steep).

At each time step n, Gauss elimination method is used to
solve:

H ¼ A�1B: ð6Þ

This model has been validated against an available exact
solution for a non-linear heat sink problem [16] and an
experimental linear measurement [17].
3. Parameter estimation method

A sample is subjected to a heat flux and the temperature
rise in the probe is measured. This output signal is a func-
tion of the input heat flux and the unknown conductivity of
the sample.

b denotes the parameter vector to be estimated (conduc-
tivities), the maximum number of parameters p that can be
estimated is determined through a sensitivity study (see
Section 4):

b ¼ ðb1; b2; . . . ; bpÞ: ð7Þ
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Fig. 4. Enthalpy versus temperature for the gel water–agar.
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The least square function S to be minimized is:

SðbÞ ¼
Xn

i¼1

ðY ðtiÞ � T ðti; bÞÞ2; ð8Þ

where Y ðtiÞ represents the measured temperature in the
probe at time ti ð1 6 i 6 nÞ and T ðti; bÞ is the correspond-
ing calculated temperature at the same time. In this paper
Tðt; bÞ is obtained from the numerical model. When the
mathematical model is accurate it can be assumed that
YðtÞ ¼ Tðt; bÞ þ eðtÞ where e is the measurement and
numerical approximation error.

The minimum of SðbÞ occurs when:

oSðbÞ
obj

¼ �2
Xn

i¼1

½ðY ðtiÞ � T ðti; bÞÞ�X jðti; bÞ ¼ 0; ð9Þ

where 1 6 j 6 p and X jðti; bÞ ¼ oT ðti; bÞ=obj is the sensitiv-
ity coefficient. It expresses the change of the temperature
due to a change in the parameter bj. Only parameters with
uncorrelated (not linear dependent) sensitivity coefficients
can be estimated [15]. When the mathematical model is
numerical, as in this case, coefficients Xj can be calculated
using finite differences. At each iteration, and based on
the previous value of bj, Xj can be expressed as

X j ¼
T ðt; b1; . . . ; bj þ dbj; . . . ; bpÞ � T ðt; b1; . . . ; bj � dbj; . . . ; bpÞ

dbj
;

ð10Þ
where d is a small number usually taken between 10�5 and
10�2 [15]. If computing time is a limiting factor, backward
or forward difference approximation can also be used.

Eq. (9) may be rewritten in a matrix format:

XTðbÞ½Y� TðbÞ� ¼ 0: ð11Þ
Assuming a linear dependence on the parameters bj (i.e.
T ¼ Xb) the solution for b is:

bðXTXÞ�1
XTY: ð12Þ

When the problem is non-linear, as it is the case here, it
must be treated in an iterative manner:

bðkþ1Þ ¼ bðkÞ þ ½XTX��1½XTðY� TðbðkÞÞÞ�: ð13Þ
The iterations are continued until negligible variation oc-
curs between bðkþ1Þ and b(k).

4. Sensitivity study

In order to determine the optimal experimental configu-
ration (heating time, heat flux intensity, etc.) a study of the
system sensitivity to different parameters influencing the
temperature rise is performed. The case simulated here
includes a phase change for the material water–agar (4%
in mass). The enthalpy variation with temperature over a
range of 15 �C is shown in Fig. 4 [19]. The phase change
occurs between approximately �2 �C and 0 �C where the
enthalpy increases sharply by a value corresponding to
the latent heat.
The unknown thermal conductivity is determined at a
certain number of pre-defined temperatures with the
assumption of linear variation between each two points.
For each simulation these pre-defined temperatures can
be changed in the model to cover as finely as possible the
entire temperature range of interest. The model response
is the temperature variation in the probe.

Taking an initial temperature of �8 �C and a heating
power of 40 W/m over a duration of 100 s, the sensitivity
of the model to the thermal conductivity of the tested mate-
rial at seven different temperatures appears in Fig. 5. Note
that in order to easily visualise the effect of each parameter,
reduced sensitivity coefficients oT ðti;bÞ

obj
bj have been used here

to provide the absolute temperature variation due to a rel-
ative variation of bj.

Several key points can be highlighted from the graph:

� The model becomes sensitive to k (2 �C) towards the end
of the heating time when the sample reaches and goes
beyond that temperature. Similarly, the sensitivity to k

(4 �C) is nil which implies that this parameter is certainly
impossible to estimate (the sample not reaching that
temperature).
� The sensitivity to the conductivity at the initial temper-

ature, k (�8 �C), is relatively low as the temperature of
the sample around the probe increases rapidly away



Table 2
Results for three estimated conductivities

Conductivities r ¼ 0:00 r ¼ 0:02 r ¼ 0:08 r ¼ 0:15

k (�5 �C) 2.335 2.338 2.348 2.357
k (�3 �C) 1.790 1.781 1.787 1.723
k (�1 �C) 1.515 1.522 1.532 1.568

Table 3
Results for four estimated conductivities

Conductivities r ¼ 0:00 r ¼ 0:02 r ¼ 0:08 r ¼ 0:15

k (�6 �C) 2.349 2.354 2.365 2.348
k (�3 �C) 1.949 1.939 1.942 1.960
k (�2 �C) 1.576 1.579 1.556 1.477
k (�0.4 �C) 1.130 1.132 1.146 1.379

Table 4
Results for five estimated conductivities

Conductivities r ¼ 0:00 r ¼ 0:02 r ¼ 0:08 r ¼ 0:15

k (�5 �C) 2.301 2.298 2.298 –
k (�4 �C) 2.167 2.219 2.227 –
k (�3 �C) 1.922 1.910 1.910 –
k (�2 �C) 1.582 1.596 1.551 –
k (�0.4 �C) 1.123 1.112 1.164 –
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from �8 �C. It may then not be easy to estimate this
parameter.
� The sensitivity to conductivities at negatives tempera-

tures (�8, �6, �4 and �2 �C) are clearly showing a lin-
ear dependency (same pattern) which is likely to make
their simultaneous estimation difficult.

From these observations the following conclusions can
be drawn:

1. In order to improve the sensitivity to conductivities at
positive temperatures and thus their accurate estima-
tion, the heating power and/or heating duration can
be increased (to create a higher temperature gradient).

2. Although the highest number of estimated conductivi-
ties the better approximation of the actual curve
k ¼ f (temperature), it seems that due to sensitivity coef-
ficients correlation, it is only possible to estimate a lim-
ited number of points on that curve at a time. This is
easily overcome by estimating different sets of conduc-
tivities through repeated simulation runs.
5. Conductivity estimation

Simulations using calculated data (probe temperature)
to which noise (measurement errors) has been added to
simulate real temperatures, have been carried out to study
the potential of the method. Measured probe temperatures
have been simulated using the values of the sample thermal
conductivity shown in Table 1 [20]. In all parameter estima-
tion techniques initial values of the unknown parameters
should be chosen carefully for the method to converge.
The physical understanding of the direct problem can help
setting these values. For example, in this study, initial val-
ues have been chosen within the range between the known
thermal conductivities of ice and water. These values have
also been used as base values for the sensitivity study.

In order to avoid oscillations and divergence of the esti-
mation process, Eq. (13) based on ordinary least squares is
modified by a combination of Levenberg method and mod-
ified Box–Kanemasu method [17]. The iteration process
becomes:

bðkþ1Þ ¼ bðkÞ þ xðkþ1ÞPðkÞ½XTðkÞðY� TðkÞðbÞÞ�; ð14Þ

where x is a relaxation coefficient calculated by the modi-
fied Box–Kanemasu method to avoid oscillations by ensur-
ing that Sbðkþ1Þ

6 SbðkÞ and P�1 ¼ XTXþX with X a
diagonal matrix.

From Eq. (14) we note that, near the solution when
Db! 0 ðbðkþ1Þ � bðkÞÞ, the matrix X has almost no influ-
Table 1
Thermal conductivity of water–agar gel

T (�C) �10 �5 �4 �3 �
k (W/m K) 2.45 2.30 2.18 1.90
ence on the function S. Therefore this matrix stabilizes
the estimation procedure without affecting the solution.

The calculation of X has been proposed in [18]:

Xjj ¼ d
oS=obj

ðoS=objÞinit

X jj; ð15Þ

where d is a small number, usually 10�3
6 d 6 10�1, oS=obj

is the first derivative of SðbÞ with respect to bj and
ðoS=objÞinit is the first derivative of SðbÞ with respect to bj

at the first iteration.
Different numbers of conductivities at different tempera-

tures have been estimated, some of the results are shown in
Tables 2–4 (r being the standard deviation of the added
noise, ranging from 0.00 when no noise has been added
to 0.15 to include typical experimental errors).
6. Analysis of results

The estimation of fewer parameters does not cause any
convergence difficulties (results for 1 and 2 parameters
are not shown here). However, estimating fewer points in
the curve k ¼ f ðT Þ leads to a loss of accuracy. For exam-
ple, when r ¼ 0:00, estimation error for k (�3 �C)
decreases from �5.79% (three parameters) to 1.15% (five
parameters). At the same time the accuracy of estimated
conductivities is affected by measurement errors (e.g.
2.57% for r ¼ 0:00 to 3.15% for r ¼ 0:15 on the value of
2.5 �2 �1.5 �1 �0.4 0
1.76 1.65 1.54 1.40 1.20 0.56
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k (�3 �C)). This effect increases with the number of esti-
mated parameters until it becomes impossible for the esti-
mation process to converge (in this case five parameters
with maximum noise).

7. Conclusion

The potential of the thermal probe in non-linear con-
ductivity determination has been shown. This has been
done through a numerical heat transfer model and an ori-
ginal parameter estimation technique. The mathematical
formulation of the system uses enthalpy as primary vari-
able in order to easily accommodate phase change prob-
lems. The parameter estimation process minimizes
oscillations through controlled relaxation and helps con-
vergence by re-conditioning of the matrix XTX. Sensitivity
study is crucial in any parameter estimation problem as it
provides indications on whether the estimation is possible
and the best configuration (e.g. heating power, time, num-
ber of parameters etc.). Results so far are very promising
and the experimental application of this method will be
reported in a following paper.
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des réfractaires par la méthode du fil chaud, High Temp. High Press.
24 (5) (1992) 9–19.

[4] J. Ewen, H.R. Thomas, The thermal probe – measurement of the
thermal conductivity and drying rate of soil in the field, Geotech.
Test. J. 15 (3) (1992) 256–263.

[5] C.L. Hsu, D.R. Heldman, Prediction models for the thermal
conductivity of aqueous starch, Int. J. Food Sci. Technol. 39 (7)
(2004) 737–743.

[6] F. Jaroszyk, E. Marzec, M. Tuliszka, Apparatus for thermal conduc-
tivity measurement in liquids, J. Tech. Phys. 30 (1) (1989) 3–15.
[7] G. Antonini et al., Sonde de mesure in situ de la conductivité
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